A new application of fuzzy set theory to the Black-Scholes option pricing model
نویسندگان
چکیده
The Black–Scholes Option pricing model (OPM) developed in 1973 has always been taken as the cornerstone of option pricing model. The generic applications of such a model are always restricted by its nature of not being suitable for fuzzy environment since the decision-making problems occurring in the area of option pricing are always with a feature of uncertainty. When an investor faces an option-pricing problem, the outcomes of the primary variables depend on the investor’s estimation. It means that a person’s deduction and thinking process uses a non-binary logic with fuzziness. Unfortunately, the traditional probabilistic B–S model does not consider fuzziness to deal with the aforementioned problems. The purpose of this study is to adopt the fuzzy decision theory and Bayes’ rule as a base for measuring fuzziness in the practice of option analysis. This study also employs ‘Fuzzy Decision Space’ consisting of four dimensions, i.e. fuzzy state; fuzzy sample information, fuzzy action and evaluation function to describe the decision of investors, which is used to derive a fuzzy B–S OPM under fuzzy environment. Finally, this study finds that the over-estimation exists in the value of risk interest rate, the expected value of variation stock price, and in the value of the call price of in the money and at the money, but under-estimation exists in the value of the call price of out of the money without a consideration of the fuzziness. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Barrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملA new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملValuation of installment option by penalty method
In this paper, installment options on the underlying asset which evolves according to Black-Scholes model and pays constant dividend to its owner will be considered. Applying arbitrage pricing theory, the non-homogeneous parabolic partial differential equation governing the value of installment option is derived. Then, penalty method is used to value the European continuous installment call opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 29 شماره
صفحات -
تاریخ انتشار 2005